

Test methods session II

Measurement of flow quantities and volume

Kevin ROMIEU (CETIAT), <u>kevin.romieu@cetiat.fr</u>

MFMET MFA Workshop on Standardization of test methods in microfluidics IPQ, Caparica (Portugal) May 22nd, 2024

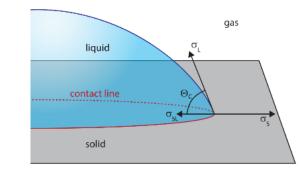
The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States

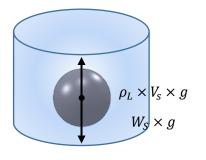
Overview

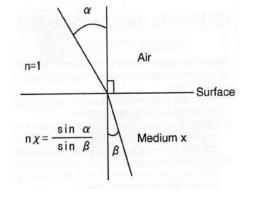
- Based on MFMET Deliverable 3 [1] and experiments performed in activity 2.4.3 (to be published)
- Focus on measuring techniques for some flow quantities
- How to get traceable measurements

References:

[1] Büker, O. et al. (2024) Calibration guide for the evaluation of flow-related quantities in microfluidic devices, https://doi.org/10.5281/zenodo.11164417


Liquid properties


Interest of industry experts for anything that affects pressure drop and flow resistance in the device


- Viscosity
- Density
- Contact angle
- Refractive index (optical methods)

More information in:

- [2] about normative definitions
- [3] about practical details traceability, dissemination of units, instruments
- in the following talk!

References:

- [2] Akselli, B. *et al.* (2022) MFMET A2.2.1 Literature review of existing metrology and normative standards related to the flow properties and microfluidic devices, doi: <u>10.5281/zenodo.6576473</u>
- [3] Batista, E. et al. (2023) MFMET A2.3.2: Test protocols for liquid properties related to microfluidic devices, doi: 10.5281/zenodo.7845225

Flow quantities

- Internal volume
- Flow rate

Focus

- Flow resistance
- Dead volume
- Droplet size/volume variation
- Flow pressure (inline pressure)

Reminder: see [1] for more info

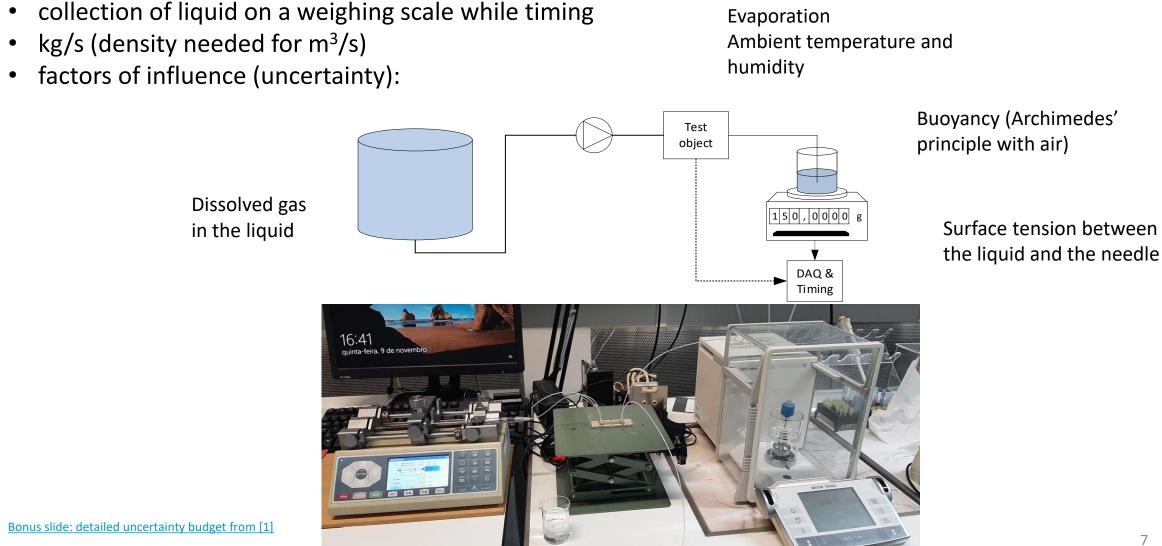
References:

[1] Büker, O. et al. (2024) Calibration guide for the evaluation of flow-related quantities in microfluidic devices, https://doi.org/10.5281/zenodo.11164417

Internal volume

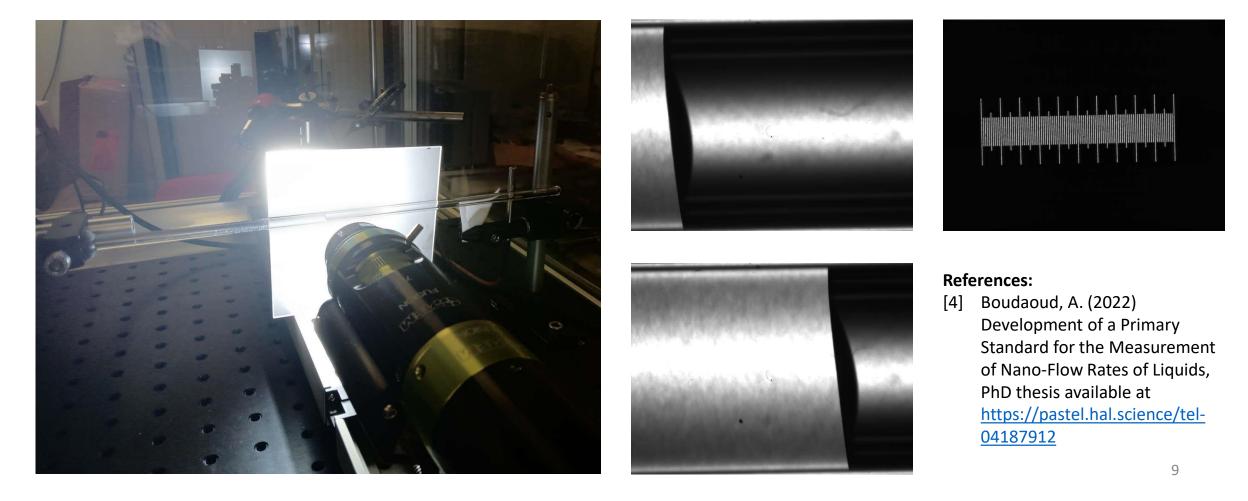
- Using a calibrated weighing scale...
- The volume is determined gravimetrically by weighing the chip to be calibrated when empty and when filled with a suitable liquid.
- Each channel is tested separately.
- The difference obtained in the weighing measurements gives the mass of the liquid contained in a particular channel.

Filled	Iteration 1		Iteration 6	σ	Average
channels	(g)	(g)	(g)	(g)	(g)
0	503,3263		503,3264	0,00005	503,3274
а	503,3308		503,3307	0,00005	503,3318
b	503,3311		503,3310	0,00008	503,3321
С	503,3308		503,3306	0,00006	503,3317
0	503,3260		503,3260	0,00000	503,3270

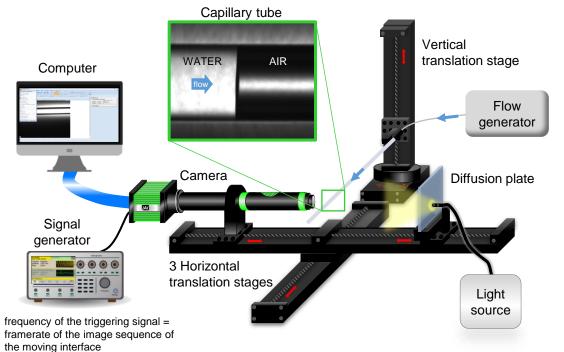

Filled	m	U (k=2)	V	U (k=2)
channels	(mg)	(mg)	(μL)	(μL)
а	4,58	0,74	4,59	1,49
b	4,88	0,75	4,89	1,50
С	4,52	0,75	4,52	1,49

Flow rate: gravimetric method

Courtesy of IPQ



Flow rate: front track method


- Pictures from CETIAT bench, more info in PhD thesis [4]
- Method also available at IPQ, ask Elsa during the visit of IPQ this afternoon!

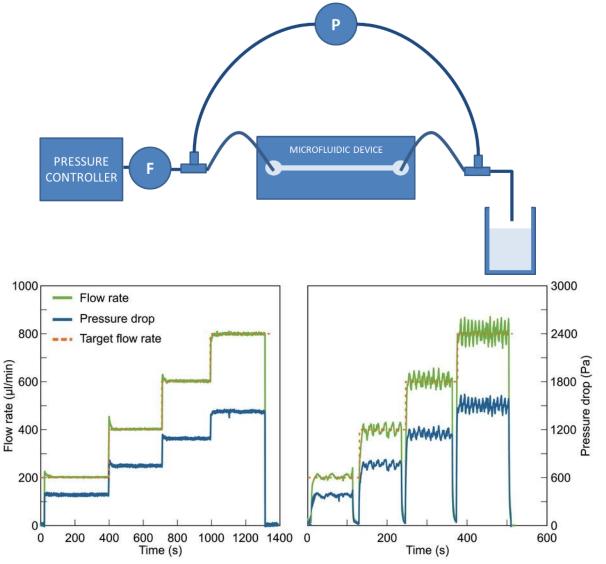
generator

Flow rate: front track method

- filming the position of the meniscus over time + inner dimensions of capillary •
- m^3/s (density needed for kg/s) •

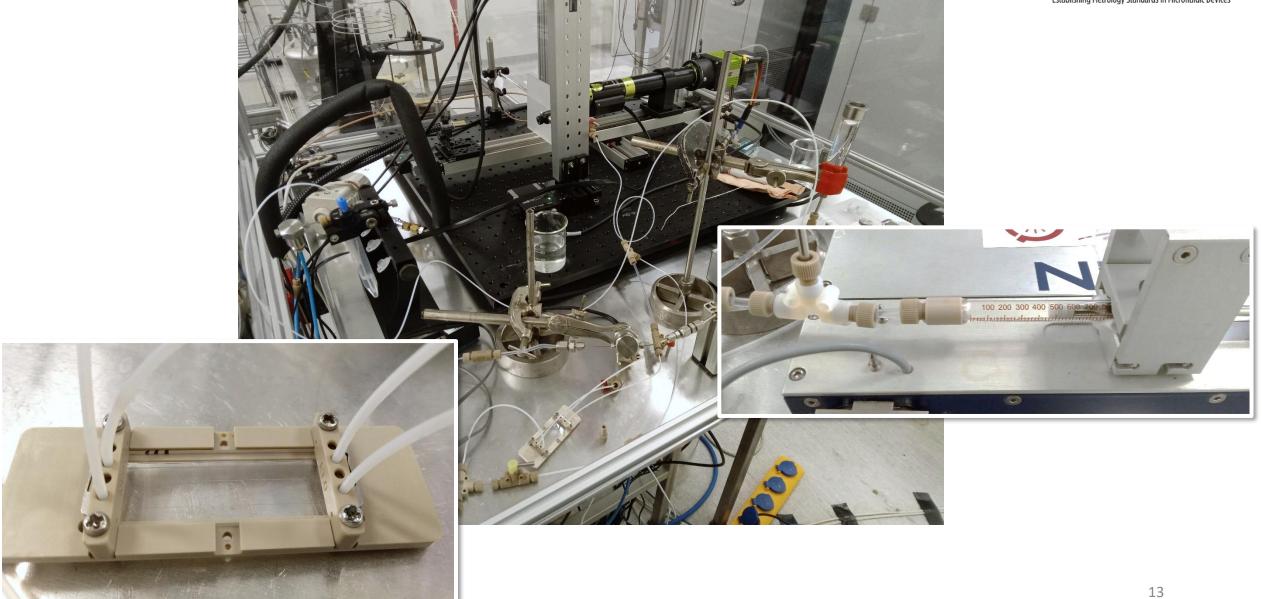
- flow rate Q_{v}
- flow velocity v
- capillary's inner diameter R
- interface displacement Δx
- time interval between 2 images Δt

$$Q_V = v.\pi R^2 = \frac{\Delta x}{\Delta t}\pi R^2$$

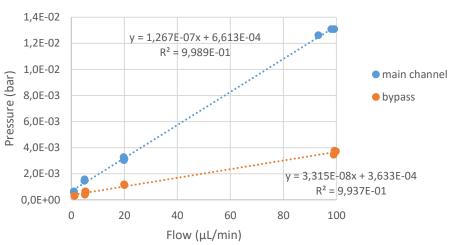

Flow resistance

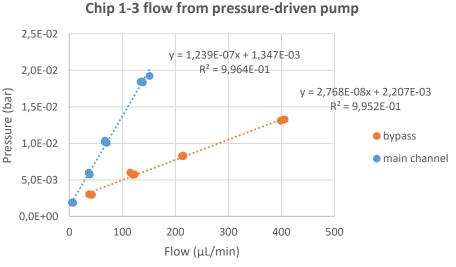
- also called hydrodynamic resistance [5], in Pa·s/m³ $\Delta P = Q \times R_{H}$
- chart of 'flow rate vs pressure'
- R_H depends on flow rate, dimensions, viscosity
- models for R_H depending on the shape of channels, common hypotheses:
 - Low Re number
 - Incompressible fluid
 - Unidirectional flow
 - Steady flow along the channel
 - Small fluid mass per distance unit, so gravity is negligible
 - Negligible surface tension forces
 - Negligible friction forces from the wall of the channel

References:


[5] ISO 10991:2023(en) Microfluidics — Vocabulary, definition 3.2.8 https://www.iso.org/obp/ui/en/#iso:std:iso:10991:ed-2:v1:en:term:3.2.8

Flow resistance: setup at CETIAT




Flow resistance: results

- Syringe pump: $R_{\rm H} = 5.61 \cdot 10^{11} \text{ Pa} \cdot \text{s/m}^3$
- Pressure-driven pump: $R_{H} = 5.77 \cdot 10^{11} Pa \cdot s/m^{3}$
- Uncertainty:
 - to be carefully evaluated
 - can be up to 50 % of the indicated value, see [6] with a similar study
- Experiments also performed by other partners: results will be discussed in coming papers
 - report of MFMET activity 2.4.3
 - paper for CIM 2025
 - EURAMET pilot study 1613

Chip 1-3 flow from syringe pump

References:

[6] Ogheard, F. *et al.* (2024) Documented example of the test protocol for hydrodynamic resistance, flow rate and volume, <u>https://doi.org/10.5281/zenodo.11090346</u>

How to get traceable measurements?

- publicly available reports (references below) with protocols and guidelines
- MFMET designed several microfluidic transfer standards (glass and polymer):
 - known characteristics (measurements on reference test bench in labs)
 - to be available for users for calibration of their own instruments
 - check <u>mfmet.eu</u> for updates and the final reports

	LAAT for MINIET
0	0
○	0
0	0
Q	0

(C)			0
P		C	Ø
8	5	<u> </u>	Ø
10			6

References:

- [1] Büker, O. et al. (2024) Calibration guide for the evaluation of flow-related quantities in microfluidic devices, https://doi.org/10.5281/zenodo.11164417
- [2] Akselli, B. et al. (2022) MFMET A2.2.1 Literature review of existing metrology and normative standards related to the flow properties and microfluidic devices, doi: <u>10.5281/zenodo.6576473</u>
- [3] Batista, E. et al. (2023) MFMET A2.3.2: Test protocols for liquid properties related to microfluidic devices, doi: 10.5281/zenodo.7845225
- [4] Boudaoud, A. (2022) Development of a Primary Standard for the Measurement of Nano-Flow Rates of Liquids, <u>https://pastel.hal.science/tel-04187912</u>
- [5] ISO 10991:2023 Microfluidics Vocabulary
- [6] Ogheard, F. *et al.* (2024) Documented example of the test protocol for hydrodynamic resistance, flow rate and volume, https://doi.org/10.5281/zenodo.11090346

