

IMPORTÂNCIA DA QUALIDADE DA ÁGUA

Saúde pública:

Eliminar a transmissão de doenças (gastroenterites, infecções da pele, ouvidos ou olhos).

Segurança dos banhistas:

Água cristalina permite a visualização do fundo da piscina.

Legislação e normas:

Cumprimento dos requisitos legais aplicáveis que estabelecem os parâmetros da qualidade da água.

Conforto e experiência:

Água bem tratada proporciona uma experiência agradável, sem irritações, odores ou aparência desagradável.

TRATAMENTO DA ÁGUA – VISÃO GERAL

T Filtração:

Remoção de partículas sólidas e impurezas físicas através de filtros de areia, vidro filtrante, diatomáceas ou cartuchos.

Equilíbrio químico:

Ajuste de pH (7.2-7.6), **alcalinidade** (80-120 ppm) e **dureza cálcica** (200-400 ppm) e até 500 ppm para piscinas exteriores, para garantia da eficácia dos produtos de tratamento.

Desinfeção:

Eliminação de microrganismos através de agentes químicos ou físicos, garantindo uma água segura.

Lim

Limpeza e aspiração:

Limpeza das superfícies, aspiração do fundo e remoção dos partículas flutuantes para complementar o tratamento químico.

FONTES DE CONTAMINAÇÃO

- Suor e óleos corporais
- Urina e outros fluidos corporais
- Microrganismos da pele e mucosas
- Cosméticos e protetor solar

Ambiente

- Folhas, pólens e detritos vegetais
- Água da chuva e poeiras
- Poluentes transportados pelo ar (insetos e pequenos animais)

TIPOS DE MICRORGANISMOS

Bactérias

- **Escherichia coli**: Indicador de contaminação fecal
- Pseudomonas aeruginosa:Provoca infecções de pele e ouvidos
- Legionella:Provoca doença respiratória grave

Sensibilidade moderada aos desinfetantes convencionais

Vírus

- Adenovírus: Provoca conjuntivite e infecções respiratórias
- Norovírus:Provoca gastroenterite aguda
- Enterovírus:Provoca diversas doenças

Alguns são resistentes a níveis baixos de cloro

Protozoários

- Giardia:Provoca diarreia e desconforto abdominal
- **Cryptosporidium parvum:** Altamente resistente ao cloro
- Acanthamoeba:Pode causar infecções oculares graves

Elevada resistência a desinfetantes convencionais

Algas

- Algas verdes:Mais comuns, originam água turva e esverdeada
- Algas castanhas: Resistentes ao cloro
- Algas pretas: Formam manchas nas superfícies, difíceis de remover

Requerem tratamento específico (algicidas)

SISTEMAS DE DESINFEÇÃO EM PISCINAS (VANTAGENS E DESVANTAGENS)

DESINFEÇÃO

Eliminação de microrganismos através de agentes químicos ou físicos, garantindo uma água segura, prevenindo a transmissão de agentes infecciosos entre os banhistas.

- ✓ SUBPRODUTOS DE DESINFEÇÃO (SPDs)
- **✓ DESINFEÇÃO QUÍMICA: AGENTES QUÍMICOS**
- ✓ DESINFEÇÃO FÍSICA: AGENTES FÍSICOS

SUBPRODUTOS DA DESINFEÇÃO

O que são Subprodutos da Desinfeção (SPDs)?

Formação

Compostos químicos formados quando desinfetantes (principalmente cloro) reagem com a matéria orgânica presente na água, como suor, urina, células da pele e cosméticos.

✓ Cloraminas

Formadas quando o cloro reage com compostos nitrogenados (amónia, ureia). Existem três tipos: monocloraminas, dicloraminas e tricloraminas, sendo as últimas responsáveis pelo característico "cheiro a cloro".

Irritação ocular

Vermelhidão, comichão

Problemas respiratórios

Tosse, irritação das vias aéreas, agravamento da asma

Irritação cutânea

Pele seca, comichão e erupções cutâneas

✓ Trihalometanos (THMs)

Grupo de compostos orgânicos que incluem o clorofórmio, bromodiclorometano, dibromoclorometano e bromofórmio. Formados pela reação do cloro com matéria orgânica natural.

CLORO

Mecanismo de Ação

Reação Química

Quando adicionado à água, o cloro forma ácido hipocloroso (HOCl) e iões hipoclorito (OCl-).

$$Cl_2+$$
 H $_2O$ \rightarrow HOCl + HCl

Ação Oxidante

O ácido hipocloroso (HOCI) é um poderoso oxidante que destrói as enzimas essenciais dos microrganismos, danificando as suas membranas celulares inativando-os.

Cloro Livre vs Cloro Combinado

✓Cloro Livre: HOCl (80-100 vezes mais eficaz) e OCl disponíveis para a desinfecção.

✓Cloro Combinado:

Cloro que já reagiu com compostos/nitrogenados formando cloraminas, com menor poder desinfetante e causam um odor desagradável.

Influência do pH

O pH da água determina a proporção entre HOCI (mais eficaz) e OCI

pH da Água

Ácido Hipocloroso (HOCl) fon Hipoclorito (OCl-)

Cloro gás (Cl₂)

Forma gasosa elementar, utilizada principalmente em piscinas de grande dimensão e instalações comerciais. Requer equipamento especializado e regras de segurança específicas.

100% cloro disponível

\$ Custo baixo

A Risco elevado

Hipoclorito de Sódio (NaClO)

Solução líquida, de fácil aplicação. Degrada-se rapidamente com a luz solar e o calor. Aumenta o pH da água.

10-15% cloro disponível \$ Custo baixo

Fácil utilização

Hipoclorito de Cálcio $(Ca(CIO)_2)$

Forma granular ou em pastilhas, é mais estável do que o hipoclorito de sódio. Aumenta a dureza cálcica da água. Dissolução rápida.

65-70% cloro disponível

\$ Custo médio

Oxidante forte

Dicloro (Dicloroisocianurato de Sódio)

Forma granular de dissolução rápida. Contém estabilizador (ácido cianúrico) que protege o cloro da degradação pelos raios UV. Tem um pH quase neutro, tendo um impacto mínimo no pH da água.

56-62% cloro disponível

\$ Custo médio-alto

Estabilizado

Tricloro (Ácido Tricloroisocianúrico)

Pastilhas de dissolução lenta. Elevado teor em cloro. Contém estabilizador (ácido cianúrico). Reduz o pH da água.

O ácido cianúrico deverá ser controlado (<50 ppm) para evitar "overstabilization" do cloro

90% cloro disponível

\$ Custo médio-alto

Dissolução lenta

Cloro Líquido Estabilizado

Solução de hipoclorito de sódio com estabilizador. Mais resistente à degradação por raios UV. Fácil aplicação.

10-12% cloro disponível

\$ Custo médio

Estabilizado

Vantagens e Desvantagens do Cloro

Alta Eficácia

Amplo espectro de ação contra bactérias, vírus e algas, com rápida eliminação de patogénicos.

S Custo-Benefício

Baixo custo em comparação com outros métodos de desinfecção, tornando-o acessível para qualquer tipo de piscina.

Efeito Residual

Mantém-se ativo na água por horas ou dias, proporcionando proteção contínua contra novos contaminantes (utilizado como desinfetante de cobertura).

Facilidade de Uso

Disponível em várias formas (líquido, granulado, pastilhas), com aplicação simples e monitorização fácil através de testes kits.

Desvantagens

O Irritação

Pode causar irritação nos olhos, pele e vias respiratórias, especialmente quando mal doseado ou com formação excessiva de cloraminas.

Degradação por UV

Decompõe-se rapidamente sob a luz solar, exigindo adição frequente ou uso de estabilizadores (ácido cianúrico).

Subprodutos

Forma cloraminas e trihalometanos (THMs) ao reagir com a matéria orgânica, potencialmente prejudiciais à saúde.

Sensibilidade ao pH

Eficácia reduzida a pH superior a 7.6, exigindo monitorização e ajustes constantes do equilíbrio químico da água.

Princípio de Funcionamento

O que é?

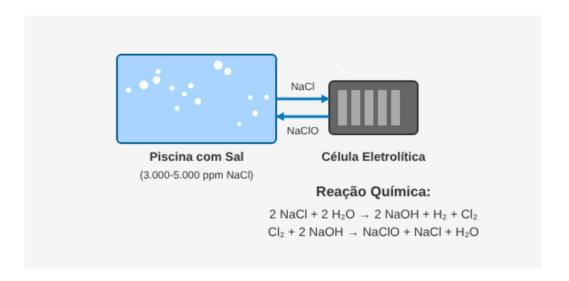
Sistema que utiliza sal comum (NaCl) dissolvido na água da piscina para produzir cloro através de um processo de eletrólise, eliminando a necessidade de adicionar produtos químicos clorados.

Processo de Eletrólise

Uma célula eletrolítica, instalada no sistema de recirculação, converte o sal (NaCl) dissolvido na água em hipoclorito de sódio (NaClO).

Concentração de Sal

Requer entre 3.000 e 5.000 ppm de sal na água (aproximadamente 10 vezes menos que a água do mar), proporcionando uma sensação suave na pele e olhos.



www.panozon.com.br

Em piscinas salinas exteriores poderá ser utilizado o ácido cianúrico como estabilizador do cloro gerado.

Eletrólise do sal

Vantagens

- ✓ Água mais suave para a pele e olhos
- Produção contínua de cloro
- Reduz a utilização de produtos químicos

Desvantagens

- Custo inicial de instalação elevado
- × Potencial corrosão de equipamentos
- × Rejeição de águas com elevada salinidade
- × Produção de gás Hidrogénio como subprodutos, podendo apresentar risco em áreas mal ventiladas

BROMO

Características do Bromo

Estabilidade a Altas Temperaturas

O bromo mantém a sua eficácia a temperaturas elevadas (até 40°C), sendo ideal para spas, hidromassagens e piscinas aquecidas onde o cloro perde eficiência.

Menor dependência do pH

Permanece eficaz numa gama mais ampla de pH (7.0-8.4), oferecendo maior flexibilidade operacional e reduzindo a necessidade de ajustes frequentes.

Bromaminas vs. Cloraminas

As bromaminas formadas são menos irritantes do que as cloraminas e mantém propriedades desinfetantes, ao contrário das cloraminas que são apenas irritantes.

Aplicação e Dosagem

Disponível em pastilhas, granulado ou líquido. Concentração recomendada: 3-5 ppm. Pode ser usado em sistemas automáticos de dosagem.

Característica	Cloro	Bromo
Eficácia em pH alto	Reduzida acima de 7.6	Mantém-se até 8.4
Resistência ao calor	Degrada rapidamente	Estável até 40°C
Irritação	Moderada a alta	Baixa
Odor	Característico forte	Suave ou ausente
Custo	Baixo	3-4x mais caro
Subprodutos	Cloraminas irritantes	Bromaminas ativas
Dosagem típica	1-3 ppm	2-4 ppm
Aplicação ideal	Piscinas convencionais	Spas e piscinas aquecidas

OXIGÉNIO ATIVO

Princípio de Funcionamento

Base Química

Utiliza peróxido de hidrogénio (H₂O₂) como agente oxidante principal. Decompõe-se na água libertando oxigénio atómico (O) altamente reativo.

 $H_2O_2 \rightarrow H_2O + O$ (oxigénio nascente)

Mecanismo de Ação

O oxigénio atómico oxida as membranas celulares dos microrganismos, destruindo as enzimas essenciais provocando a morte celular. Processo similar ao ozono, mas menos potente.

Formas Comerciais

Disponível como peróxido de hidrogénio líquido (35-50%), pastilhas ou forma granular. Alguns produtos combinam com ativadores para aumento da eficácia.

Aplicação e Dosagem

Dosagem típica: 50-100 ml de H_2O_2 35% por 10 m³ de água. Aplicação direta na piscina ou através de dosadores automáticos.

Vantagens

- ✓ Sem cloro, sem odor
- ✓ Não irrita pele e olhos

Desvantagens

- × Custo elevado
- Sem efeito residual duradouro

O que é o Ozono?

Molécula Triatómica

O ozono (O₃) é uma forma alotrópica do oxigénio, composta por três átomos de oxigénio. É um gás instável e altamente reativo, com poderosas propriedades oxidantes.

3 $O_2 \rightarrow 2 \ O_3$ (com energia elétrica)

OZONO

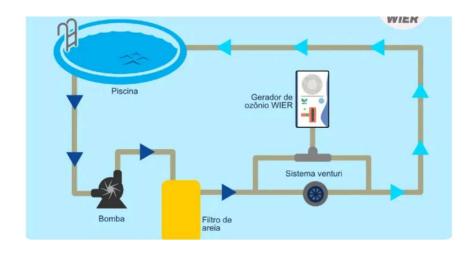
Mecanismo de Ação

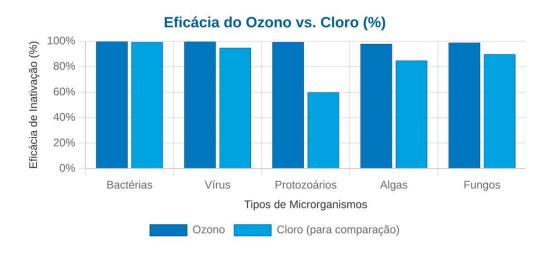
Atua por oxidação direta das membranas celulares dos microrganismos, provocando destruição celular. Não forma subprodutos tóxicos persistentes.

Geração In Situ

Produzido no local através de ozonizadores que utilizam descargas elétricas ou radiação UV para converter oxigénio (O_2) em ozono (O_3) .

Tempo de Contato


Requer apenas alguns minutos de contato para inativação eficaz dos microrganismos. Decompõe-se rapidamente em oxigénio, não deixando residual na água.



OZONO

Ozono: Princípios e Aplicação

Vantagens e Desvantagens do Ozono

Vantagens

Poder Oxidante Superior

2,07 V de potencial de oxidação vs. 1,48 V do cloro (HClO). **Elimina microrganismos** resistentes ao cloro, incluindo Cryptosporidium e Giardia.

Por exemplo: a inativação de E.coli é cerca de 3125 vezes mais rápida do que com cloro.

Ambientalmente Seguro

Decompõe-se naturalmente em oxigénio, não deixando resíduos químicos tóxicos na água ou no ambiente.

Sem Odores ou Irritação

Não produz cloraminas ou outros subprodutos irritantes. Água sem cheiro característico de cloro.

Melhoria na Qualidade da Água

Oxida a matéria orgânica, reduz a turvação (efeito floculante).

Desvantagens

S Custo Inicial Elevado

Requer investimento no sistema de destruição de ozono residual.

Custo operacional também é elevado devido ao consumo energético

X Sem Efeito Residual

O ozono residual é removido devido à sua toxicidade, a água fica sem proteção residual (**desinfetante cobertura**).

Toxicidade do Gás

Requer sistemas de ventilação adequados e detectores de fugas.

💢 Complexidade Técnica

Operação e manutenção especializada. Sistemas complexos com múltiplos componentes e controles.

RADIAÇÃO ULTRAVIOLETA (UV)

▼ Mecanismo de Ação

Radiação UV-C Germicida

A radiação ultravioleta na faixa UV-C (200-280 nm) penetra na parede celular dos microrganismos e é absorvida pelo DNA e RNA, causando danos irreversíveis.

Máxima absorção pelos ácidos nucleicos dos microrganismos

Instalação no Sistema

As lâmpadas de UV são instaladas em reatores na linha de recirculação da água. A água passa pelo reator onde é exposta à radiação UV por tempo suficiente para inativação dos microrganismos.

Dose UV Necessária

Medida em mJ/cm² (milijoules por centímetro quadrado). Bactérias: 6-10 mJ/cm², Vírus: 15-25 mJ/cm², Protozoários: 5-15 mJ/cm².

Vantagens e Desvantagens da radiação UV

Sem Produtos Químicos

Processo físico que não adiciona substâncias químicas à água. Não altera pH, alcalinidade ou outros parâmetros químicos.

Eficaz contra microrganismos resistentes

Inativa microrganismos resistentes ao cloro, como Cryptosporidium e Giardia, que são difíceis de eliminar com desinfetantes químicos.

Cryptosporidium: 99,9% de inativação com 5-15 mJ/cm²

Ação Instantânea

Inativação imediata dos microrganismos. Eficaz na remoção de cloraminas. Não exige tempo de contato prolongado.

Ambientalmente Seguro

Não produz subprodutos tóxicos ou resíduos químicos.

Desvantagens

Sem Efeito Residual

Não oferece proteção contínua após o tratamento. Requer combinação com cloro para manter residual desinfetante (**desinfetante de cobertura**).

Sensível à Turvação

Eficácia reduzida em águas turvas ou com concentração elevada de SST. Requer pré-filtração eficiente.

Manutenção das Lâmpadas

Vida útil das Lâmpadas UV (8.000-12.000 horas). Requer limpeza regular do quartzo e substituição periódica.

S Custo Inicial Moderado

Investimento inicial em equipamento UV. Custos operacionais com energia elétrica e substituição de lâmpadas.

IONIZAÇÃO (IÕES DE COBRE E PRATA)

Princípio da lonização

Processo Eletrolítico

Sistema que utiliza corrente elétrica de baixa voltagem par libertar iões de cobre (Cu²+) e prata (Ag+) de elétrodo metálicos na água da piscina.

Mecanismo de Ação

Os iões metálicos penetram nas membranas celulares dos microrganismos, interferindo com enzimas essenciais e processos metabólicos, causando a morte celular.

Concentrações Recomendadas

Cobre: 0,2-0,4 ppm (máximo 1,0 ppm)

Prata: 0,01-0,05 ppm (máximo 0,1 ppm)

Compatibilidade

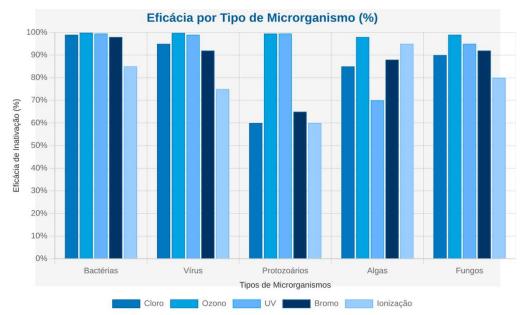
pH ótimo de funcionamento entre 7,2-7,6. Pode ser combinado com baixos níveis de cloro (0,5-1,0 ppm) para otimizar a desinfeção e manter o residual (desinfetante de cobertura).

IONIZAÇÃO (IÕES DE COBRE E PRATA)

Cu²⁺ lões Cobre

- Forte ação algicida
- Controla algas verdes e castanhas
- · Efeito bactericida moderado
- Em excesso, pode causar coloração azul-verde

Ag⁺ lões Prata


- Ação bactericida e virucida
- Eficaz contra Legionella
- Não altera cor da água
- Efeito residual prolongado

Eficácia da Ionização Cu/Ag (%) Bactérias Vírus Algas Fungos Protozoários

EFICÁCIA DOS MÉTODOS DE DESINFECÇÃO

Métodos Mais Eficazes

99,9%

Ozono contra bactérias e vírus

99,5%

UV contra protozoários resistentes

99,0%

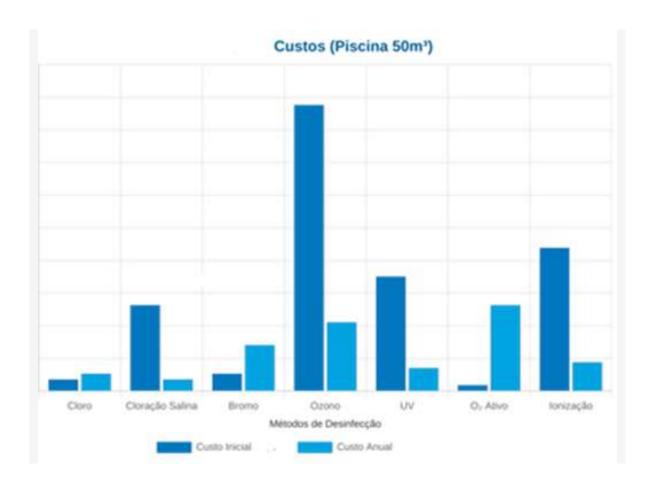
Cloro contra a maioria dos patogénicos

Tempo de Ação

Instantâneo: UV, Ozono

Rápido (minutos): Cloro, Bromo Moderado (horas): Ionização

Lento: Oxigénio Ativo


▲ Limitações Importantes

- UV e Ozono não têm efeito residual (necessário desinfetante de cobertura).
- Cloro menos eficaz em pH elevado
- Ionização requer monitorização de metais

(custo inicial vs custo anual)

Desinfeção Combinada

Estratégias de Combinação

UV + Cloro Residual

UV para inativação primária de microrganismos resistentes + cloro para manter residual desinfetante.

- Eficaz contra Cryptosporidium e Giardia
- Reduz formação de subprodutos
- Mantém proteção contínua

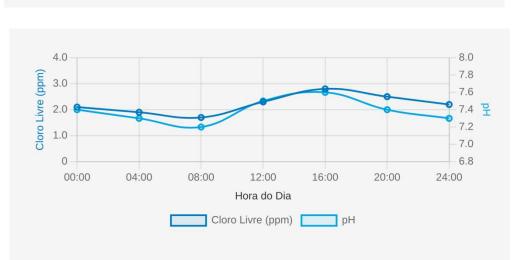
Ozono + Cloro Residual

Ozono para oxidação primária e destruição de patogénicos + cloro para manter residual e controle de algas (desinfetante cobertura).

- Máxima eficácia desinfetante
- Melhora qualidade da água
- Reduz a necessidade de concentrações elevadas em cloro

Ionização + Cloro Residual

lões de cobre e prata para controlo de algas e bactérias + cloro para manter residual desinfetante.


- Excelente controlo de algas
- Reduz uso de algicidas
- Efeito residual prolongado


Monitorização e Controlo

Parâmetros Essenciais

Monitorização Química Controlo contínuo dos parâmetros químicos fundamentais para garantir eficácia da desinfecção e segurança dos banhistas. ♦ Cloro livre: 1-3 ppm ♠ PH: 7.2-7.6 ♠ Alcalinidade: 80-120 ppm ♦ Temperatura: 26-28°C

Boas Práticas Operacionais

Rotina de Manutenção

- Diário:Teste de cloro livre e pH
- Semanal: Alcalinidade, dureza cálcica, ácido cianúrico
- mensal: Análise microbiológica completa
- Limpeza:Filtros, skimmers, drenos

Dica: Manter registos detalhados de todas as análises e intervenções realizadas.

💧 Qualidade da Água

- Manter a temperatura entre 26-28°C
- Água cristalina e sem odores
- ▼ Filtração contínua por 8-12 horas/dia
- Renovação de 5-10% da água semanalmente

Meta: Turvação < 0,5 NTU e ausência total de coliformes.

Segurança Operacional

- Utilizar EPIs adequados ao manusear produtos químicos
- Armazenar produtos em local seco e ventilado
- Nunca misturar produtos químicos diferentes
- Manter as fichas de segurança (FDS) acessíveis

Importante:

Formar, Informar e sensibilizar todos os técnicos sobre os procedimentos de emergência e primeiros socorros.

Gestão de Banhistas

- 🔯 Exigir banho antes de entrar na piscina
- ☐ Controlo da carga de banhistas (1 pessoa/3m²)
- No Proíba entrada com ferimentos ou doenças
- Supervisionar crianças constantemente

NOTA: Maior número de banhistas = maior necessidade de desinfetante.

Inovações e Tendências Futuras

Inteligência Artificial e IoT

Sistemas inteligentes que agilizem padrões de utilização, possam prever necessidades e otimizar automaticamente dosagens de produtos químicos baseados em dados históricos e condições ambientais.

Nanotecnologia

Nanopartículas de prata e óxido de titânio para desinfecção contínua. Revestimentos fotocatalíticos com auto-limpeza que destroem microrganismos sob luz solar.

Plasma Frio

Tecnologia emergente que gera espécies reativas de oxigénio e nitrogénio para desinfecção sem produtos químicos, com eficácia superior ao ozono.

Biosensores

Detecção em tempo real de microrganismos patogénicos específicos através de biosensores baseados em DNA, permitindo resposta imediata a contaminações.

Sustentabilidade

- Redução do uso de produtos químicos
- Sistemas de energia renovável
- Reutilização e reciclagem de água
- Materiais biodegradáveis

Digitalização

- Apps de monitorização remota
- Análise preditiva de manutenção
- Relatórios automáticos
- Integração com sistemas prediais existentes

PERSPETIVA 2025-2030

Prevê-se o desenvolvimento de sistemas híbridos inteligentes que combinem diversas tecnologias de desinfeção, incluindo controlo automático baseado em IA, capazes de reduzir os custos operacionais e de proporcionar uma melhoria significativa na qualidade da água.

Principais Conclusões

- Não existe um método de desinfecção universalmente superior
- Sistemas combinados oferecem melhor custo-benefício
- Monitorização contínua é essencial para uma maior eficácia
- → Automação reduz erros e otimiza custos

Fatores de Decisão

Orçamento: Inicial vs. operacional

Uso: Frequência e número de banhistas

Manutenção: Complexidade e disponibilidade técnica

Sustentabilidade: Impacto ambiental

Piscinas Residenciais

Recomendação:

Cloro convencional ou Eletrólise do sal com sistema automatizado. Para maior conforto, a combinação UV + cloro residual baixo.

Piscinas Comerciais

Recomendação:

Sistema combinado UV/Ozono + cloro para máxima eficácia e conformidade normativa.

Spas e Hidromassagens

Recomendação:

Bromo devido às temperaturas mais altas. Fundamental a renovação frequente da água.

Tendência Futura

Investimento:

Sistemas inteligentes com IA e IoT representam o futuro.

NOTAS FINAIS

- A desinfecção eficaz da água das piscinas requer uma abordagem holística:
- > Escolha do método adequado
- → Monitorização rigorosa
- Manutenção preventiva
- Qualificação técnica contínua

Investir na qualidade da água é investir na saúde e na satisfação dos utilizadores/banhistas.

Ao adotar estas recomendações, os técnicos do tratamento de água de piscinas podem não só cumprir as exigências regulamentares, como também criar ambientes aquáticos mais seguros, saudáveis e sustentáveis para todos os utilizadores.

SISTEMAS DE DESINFEÇÃO EM PISCINAS

OBRIGADA PELA ATENÇÃO

Susana Alheiro
DPM Solutions
susana.alheiro@dpmsolutions.pt
969845598