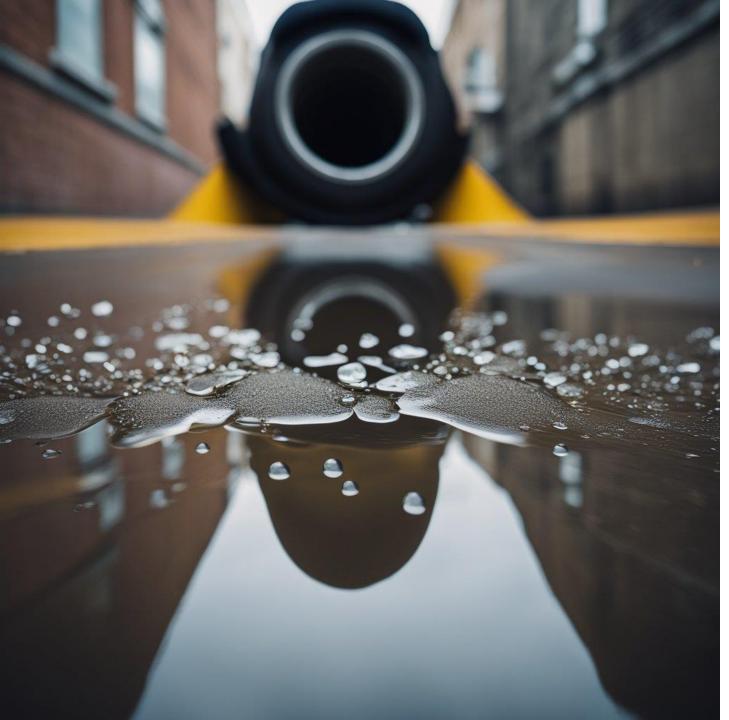
Establishing Metrology Standards in Microfluidic Devices


Leakage protocol and measurements

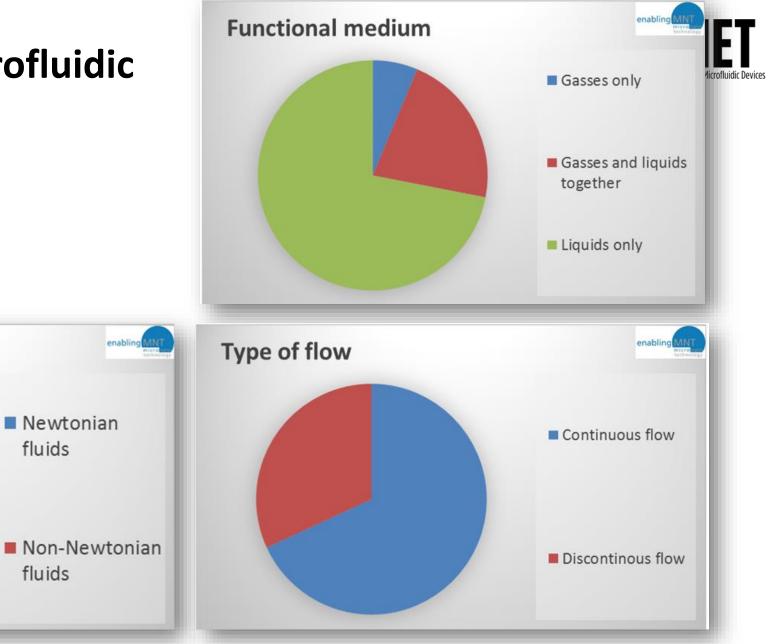
Vania Silverio (INESC MN)

Workshop on Standardization of test methods in microfluidics 22 May 2024

The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States

6.4. Leakage

The flow rate can considerably be affected by leakage in the system, often this happens in the connecting points. Leakage can also occur in case of delamination of the chip, or when cracks appear due to overpressure or destructive modification of the chip material (due to over-heat for example).

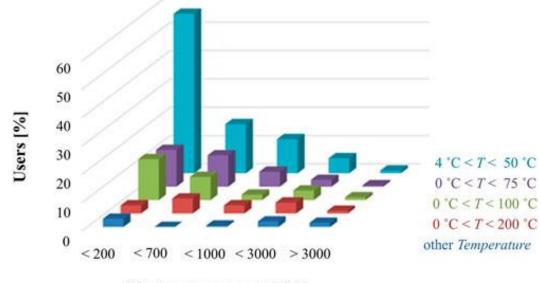

Silverio V, Metaxiotou Z, Batista E, Kartmann S, Ogheard F, Lötters J (2022). MFMET A1.1.2 - Definitions Symbols and Vocabulary of Flow Control. <u>https://doi.org/10.5281/zenodo.7092031</u>

Fluid and Flow in microfluidic devices

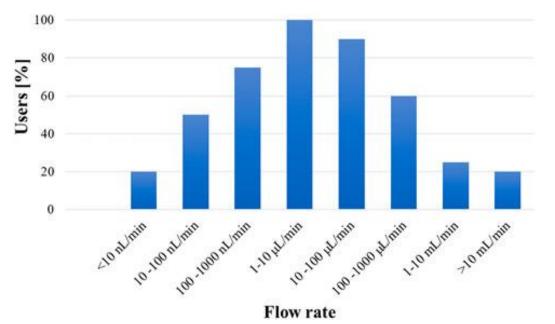
fluids

fluids

Type of fluid

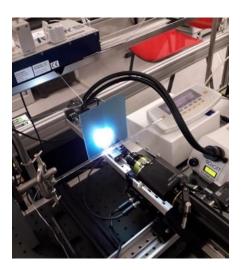


Fluid and Flow in microfluidic devices



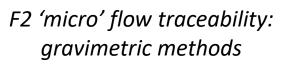
Application classes

Maximum pressure [kPa]



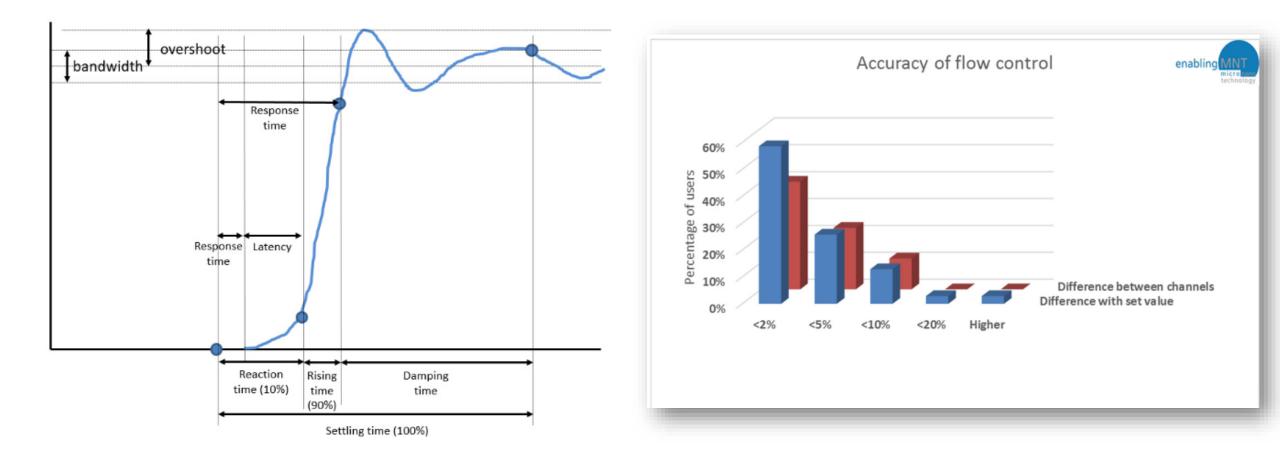
Class	Maximum pressure [kPa]	Maximum Temperature [°C]	Minimum Temperature [°C]
Capillary devices	-	50	4
PT 200/50	200	50	4
PT 200/75	200	75	4
PT 200/100	200	100	4
PT 700/50	700	50	4
PT 700/100	700	100	4
PT 3000/50	3000	50	4

Silverio *et al* (2022) Overcoming Technological Barriers in Microfluidics: Leakage Testing. Frontiers in Bioengineering and Biotechnology, 10: 958582 **DOI: 10.3389/fbioe.2022.958582**



Classes	Minimum flow	Maximum flow	Best accuracy
F1 'nano'	1 nl/min	1 μl/min	1 %
F2 'micro'	1 μl/min	100 μl/min	0.5 %
F3 'milli'	100 μl/min	10 ml/min	0.1 %

F1 'nano' flow traceability: optical methods



F3 'milli' flow traceability: gravimetric methods

Fluid and Flow in microfluidic devices

Malfunctioning risk analysis / FMEA for microfluidic devices

Table 1. FMEA for Microfluidic Devices

	Topic	Potential Failure Mode	Effect / severity (S: 1-10)	Potential Causes / Mechanisms / probability (P: 1-10)	Test / visual inspection /observable Effect of Failure Detection (D: 1-10)	Risk priority number S*P*D	Improvement / prevention actions	Actions taken for further Investigation
	General	Delamination	Leakage / 6	Corrosion / 5	Visual inspection / 5	150	Selection of appropriate materials, limit exposure time	
Materials	Polymer devices	Delamination	Leakage / 6	Contaminati on/ 4	Visual inspection / 1	24	Clean room procedures	
	Glass/silicon devices	Delamination	Etc.					
	Glass devices	Cracks	Etc.					
	Valve	Misalignment	Leakage					
Building blocks	Reaction chamber							
ing	Channel							
Build								
	Connector	Etc.						
ents	Blister							
one	Tube							
Components								
	Interfacing	Too low of a flow speed in	Incorrect measurem	Deformed ferrule used	Leakage test / 7	98	Visual inspection	Stricter procedures
Process step		flow cell	ent results / 7	/ 2	//		Inspection	ferule purchase and reusage
	Worst case							
	use							
	Storage Transport							
-	End of Life							
Operational conditions	Environment al							
Ope								

The identified actions may require **further analysis** or **corrective** and **preventative actions** especially if the risks are found to be unacceptable.

Severity, probability and detection \rightarrow represented by number 1 to 10. The product of these numbers indicates the **risk priority**

FMEA: Failure Mode and Effect Analysis

van Heeren H, Davies M, Keiser A, Lagrauw R, Reyes D R, Silverio V, Verplanck N (2022) Protocols for leakage testing <u>https://doi.org/10.5281/zenodo.6602162</u>

Malfunctioning risk analysis / FMEA for microfluidic devices

Table 1. FMEA for Microfluidic Devices

	Topic	Potential Failure Mode	Effect / severity (S: 1-10)	Potential Causes / Mechanisms / probability (P: 1-10)	Test / visual inspection /observable Effect of Failure		ority p nber a	mprove prevent actions	ement / ion	Actions taken for further Investigation
					Detection (D: 1-10)					
	General	Delamination	Leakage / 6	Corrosion / 5	Visual inspection / 5	150	a	Selectio appropr nateria exposur	iate ls, limit	
Materials	Polymer devices	Delamination	Leakage / 6	Contaminati on/4	Visual inspection / 1	24		Clean ro procedu		
2	Glass/silicon devices	Delamination	Etc.							
	Glass devices	Cracks	Etc.			-				
	Valve	Misalignment	Leakage							
ocks	Reaction									
pld	Channel					-				
iii	Gnannei					-				
Building blocks						-				
_	Connector	Etc.								
nts	Blister									
Components	Tube									
Con						-				
d,	Interfacing	Too low of a flow speed in	Incorrect	Deformed ferrule used	Leakage test / 7	98		/isual nspecti		Stricter
Process step		flow cell	ent results / 7	/ 2	//		Table	e 3. 1	Ratin	g descrij
_	Worst case use						Valu	ıe	Des	cription
	Storage					-				
	Transport						1		Pon	note
s	End of Life									
Operational conditions	Environment al						2		Ver	y Low
Op							3		Lov	

Table 2. Rating description for effect and its severity (S)

Value	Description	Criteria
		It is not likely to have much of an impact and will most likely be ignored by the
1	Minor	stakeholder.
2	Low	It is likely to cause some amount of uneasiness to the stakeholder.
		Stakeholder will suffer some discomfort due to a minor problem with
3	Low	performance.
4	Moderate	User is uncomfortable due to performance not up to the desired level.
		User is dissatisfied or there is a reduction in performance affecting the overall
5	Moderate	process
		Quality cost due to warranty and repairs or there is a significant loss in
6	Moderate	performance
		User is highly dissatisfied due to failure in some important parts of the process.
7	High	There is also the likelihood of many defects affecting overall productivity.
		User is highly dissatisfied due to failure in ALL parts of the process. There is also
8	High	the likelihood of many defects affecting overall productivity.
		Process becomes unstable which may create safety issues for the operator and
9	Very High	exceed standard acceptance criteria.
10	Very High	Leakage will create safety issues for the operator or others.

able 3. Rating description causes or mechanisms and probability (P)

Value	Description	Failure Rate	Percent Defective	Criteria
				Failure has never been seen in any
1	Remote	< 1 out of 1.5 x10 ⁶	<0.00007 %	relevant testing
2	Very Low	1 out of 1.5 x 10 ⁵	0.0007 %	
				Failure only seen once or twice in
3	Low	1 out of 1.5 x 10 ⁴	0.007 %	relevant scenarios
4	Unlikely	1 out of 2 x 10 ³	0.05 %	
				Failure potential has been noted in
				several relevant scenarios or tests.
				If procedures are followed, the
5	Moderate	1 out of 400	0.25 %	failure potential is minimal.
6	Moderate	1 out of 100	1 %	
				Failure potential has been noted in
				many relevant tests/scenarios. In-
				process control may be required to
7	High	1 out of 20	5 %	avoid failure.
8	Very High	1 out of 8	12.5 %	
				Failure potential has been noted in
				many scenarios/tests. An active
				non-standard feedback control
9	Very High	1 out of 3	33 %	loop may be required.
				Failure potential has been noted in
				most scenarios/tests. The process
	Extremely			should be re-evaluated, and/or a
10	High	>1 out of 2	50 %	redesign should be considered.

Table 4. Rating description for detection (D)

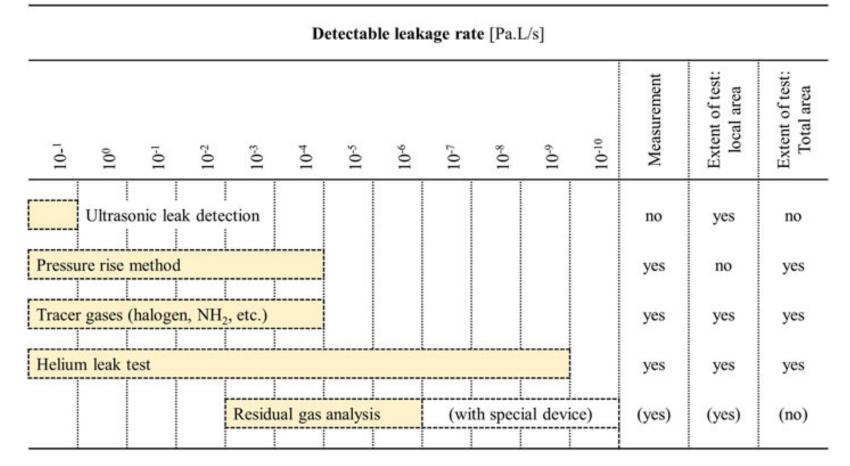
Value	Description	Failure Rates	Percent Defective	Criteria
		< 1 out of 1.5		Failure has never been seen in any
1	Remote	x10 ⁶	<0.00007 %	relevant testing
2	Very Low	1 out of 1.5 x 10 ⁵	0.0007 %	
				Failure only seen once or twice in
3	Low	1 out of 1.5 x 10 ⁴	0.007 %	relevant scenarios
4	unlikely	1 out of 2 x 10 ³	0.05 %	
5	Moderate	1 out of 400	0.25 %	Failure potential has been noted in several relevant scenarios or tests. I procedures are followed the failure potential is minimal.
6	Moderate	1 out of 100	1%	
7	High	1 out of 20	5 %	Failure potential has been noted in many relevant tests/scenarios. In- process control may be required to avoid failure.
8	Very High	1 out of 8	12.5 %	
9	Very High	1 out of 3	33 %	Failure potential has been noted in many scenarios/tests. An active non standard feedback control loop may be required.
	Extremely			Failure potential has been noted in most scenarios/tests. The process should be re-evaluated, and/or
10	High	>1 out of 2	50 %	redesign should be considered.

van Heeren H, Davies M, Keiser A, Lagrauw R, Reyes D R, Silverio V, Verplanck N (2022) Protocols for leakage testing <u>https://doi.org/10.5281/zenodo.6602162</u>

How to detect leakage ?

Leakage testing – detection limits

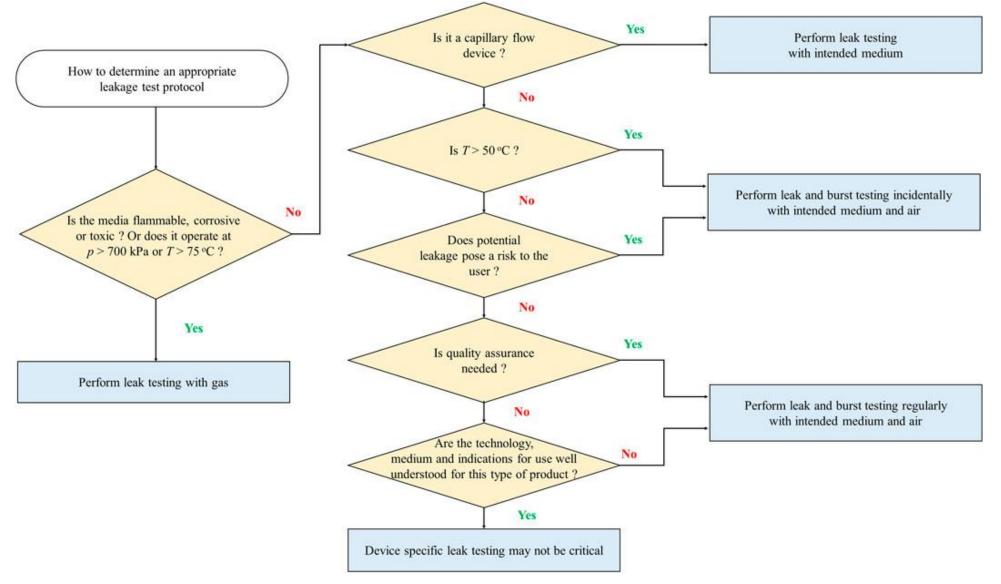
10 ¹ 10 ⁰	10-5 10-4 10-4	10-5	-01 	10-8	10-9	10-10	Measurement	Extent of test: local area	Extent of test: Total area
Dye test		1		1	-	-	yes	yes	yes
U	Itrasonic leak detect	tion					no	yes	no
Bubble test	(air / water)						yes	yes	yes
Bubble test	(air / foaming	solution)					no	yes	no
Pressure decay method							yes	no	yes
Leak tests with tracer g	ases (NH3, etc.)						yes1	yes	yes
Tracer gas method: heli	ium sniffing test	l					yes1	yes	yes


Detectable leakage rate [Po I /c]

1 quantification of the leakage rate only conditionally possible in sniffing tests

Silverio V, Guha S, Keiser A, Natu R, Reyes D R, van Heeren H, Verplanck N, Herbertson L H (2022) Overcoming Technological Barriers in Microfluidics: Leakage Testing. Frontiers in Bioengineering and Biotechnology, 10: 958582 DOI: 10.3389/fbioe.2022.958582

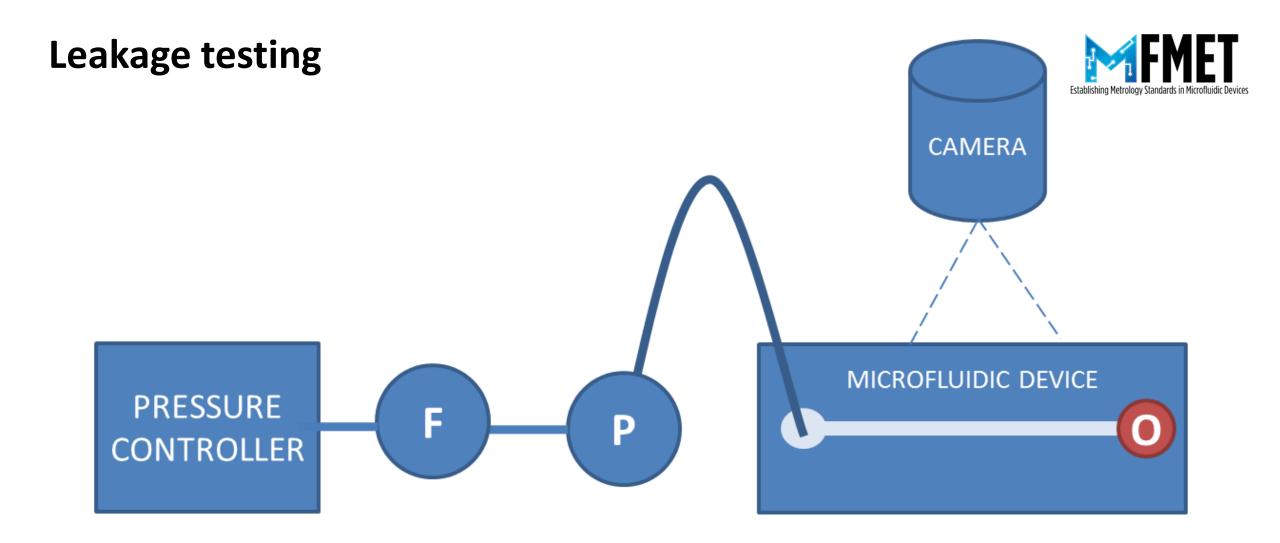
Leakage testing – detection limits



leak detection and leak tightness testing methods under vacuum

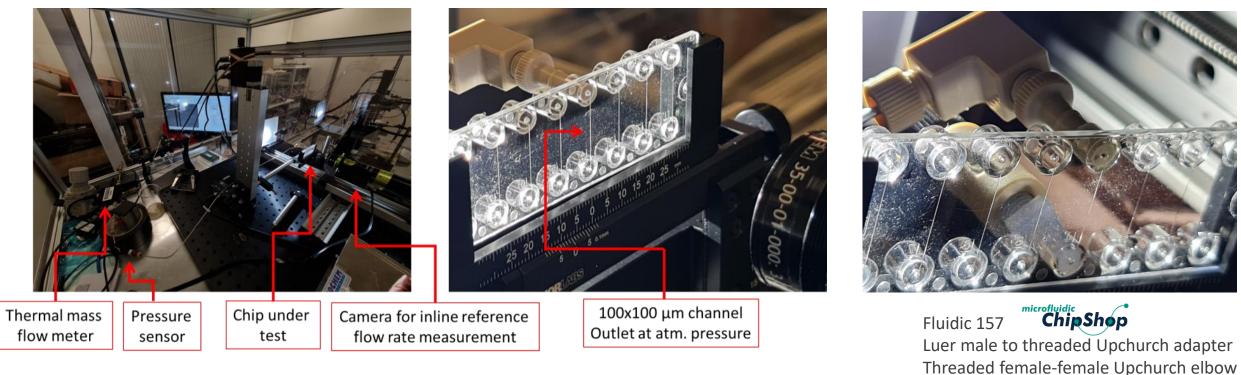
Silverio V, Guha S, Keiser A, Natu R, Reyes D R, van Heeren H, Verplanck N, Herbertson L H (2022) Overcoming Technological Barriers in Microfluidics: Leakage Testing. Frontiers in Bioengineering and Biotechnology, 10: 958582 DOI: 10.3389/fbioe.2022.958582

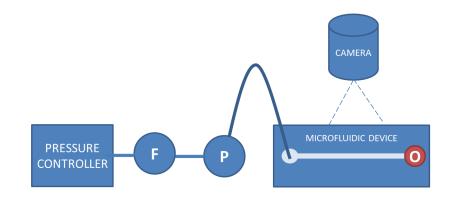
Leakage testing



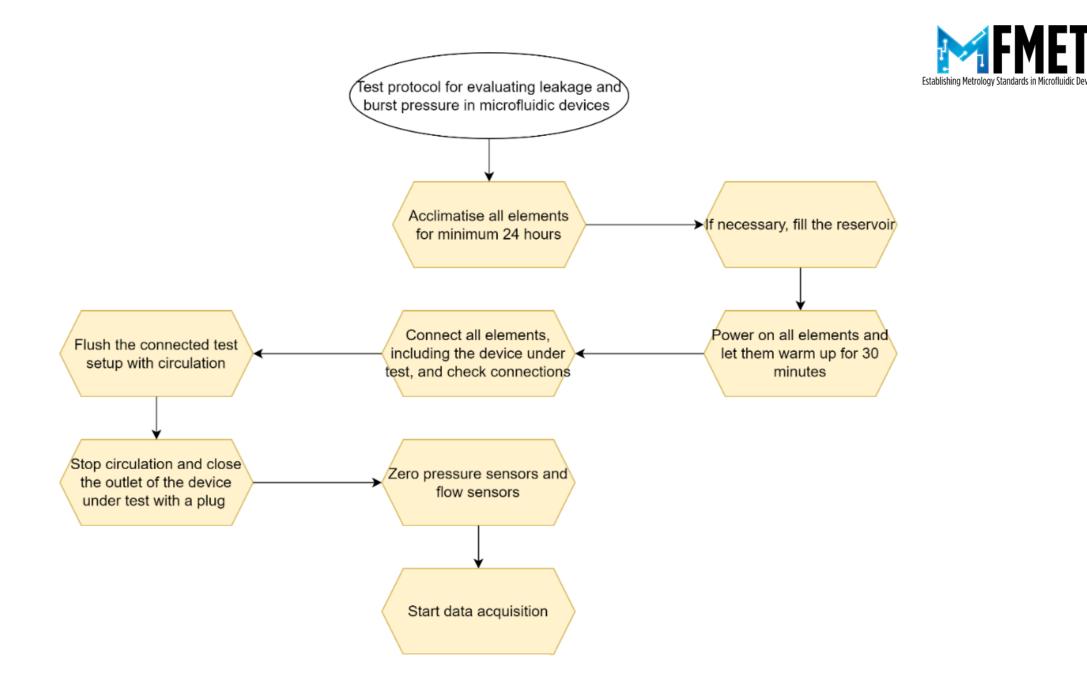
Ogheard F, Daugbjerg T S, Romieu K, Silverio V (2023) MFMET A1.2.3 - Documented example of the test protocol for leakage and burst pressure https://doi.org/10.5281/zenodo.10114802

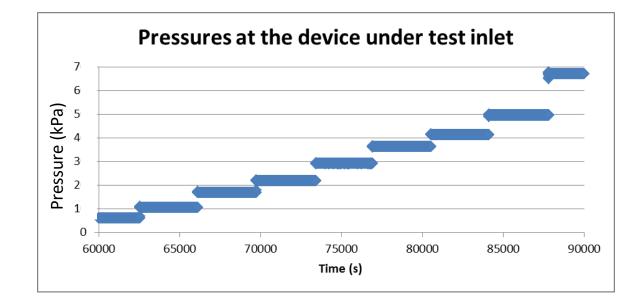
Daugbjerg T S, Ogheard F, Batista E, van Heeren H, Silverio V (2023) MFMET Deliverable 1 -Guidelines and a test protocol for flow control evaluating leakage and burst pressure in microfluidic devices https://doi.org/10.5281/zenodo.7901265

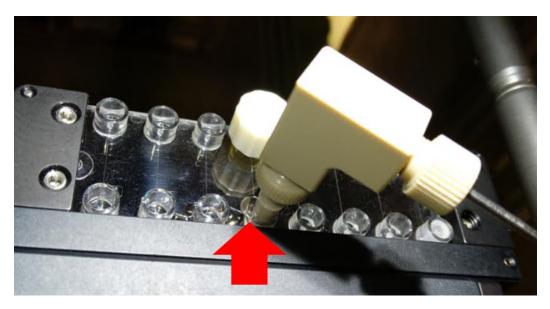



https://mfmet.eu/publications

- Deliverable 1 Guidelines and a test protocol for flow control evaluating leakage and burst pressure in microfluidic devices
- A1.2.3 Documented example of the test protocol for leakage and burst pressure
- The MFA & MFMET Protocols for leakage testing
- Overcoming Technological Barriers in Microfluidics: Leakage Testing. Front. Bioeng. Biotechnol. 10: 958582 DOI: 10.3389/fbioe.2022.958582


Leakage testing

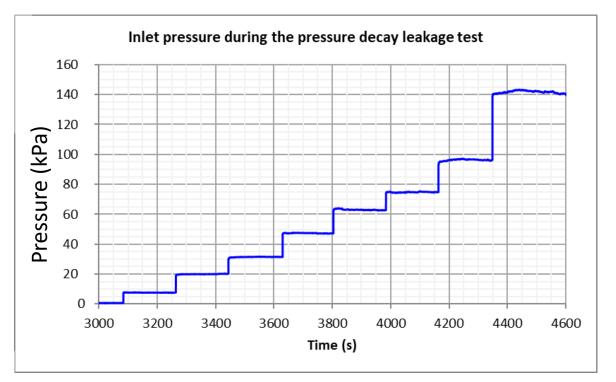

- Material: Topas (Topas is a COC cyclic olefin copolymer resin)
- 8 parallel channels of 100 µm width, 100 µm depth, 18 mm length
- 75.5 mm by 25.5 mm microscope slide format
- Luer fluidic interface



I. Visual inspection test

- 1. Power ON
- 2. 30 min stabilization time
- 3. Set pressure to increase by steps from 0 to 20 kPa
- 4. Record images, p_{in}, T_{amb}, p_{amb}, humidity

Leak appearing at the device under test Inlet during the visual leakage test Set pressure: 7 kPa

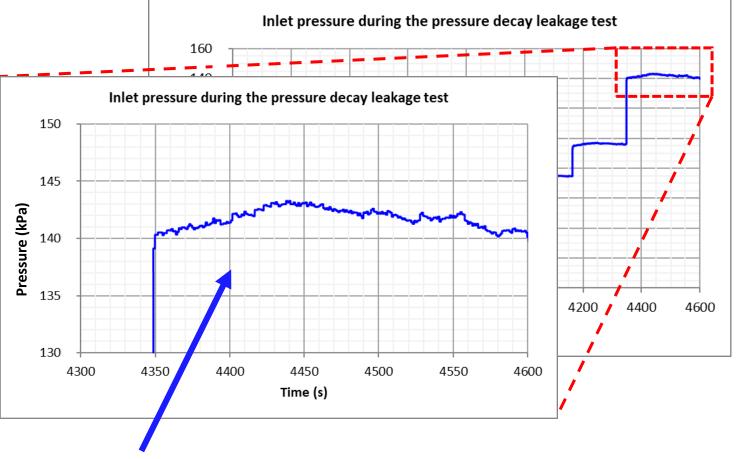


I. Visual inspection test

- 1. Power ON
- 2. 30 min stabilization time
- 3. Set pressure to increase by steps from 0 to 20 kPa
- 4. Record images, p_{in}, T_{amb}, p_{amb}, humidity

II. Pressure decay test

- 1. Power ON
- 2. 30 min stabilization time
- 3. Set pressure to increase by steps from 0 to 140 kPa
- 4. Fix the pressure at a given setpoint by the pressure controller for 3 min
- 5. Record p_{in} , T_{amb} , p_{amb} , humidity



I. Visual inspection test

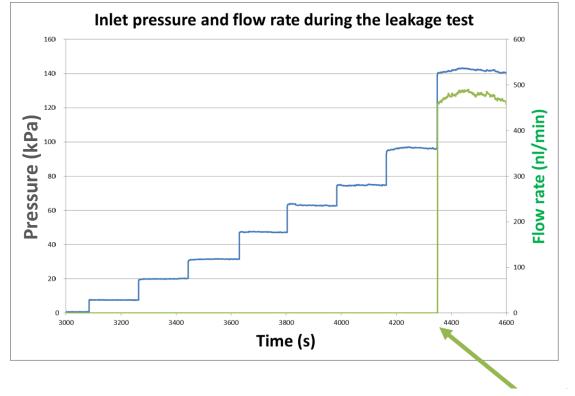
- 1. Power ON
- 2. 30 min stabilization time
- 3. Set pressure to increase by steps from 0 to 20 kPa
- 4. Record images, p_{in}, T_{amb}, p_{amb}, humidity

II. Pressure decay test

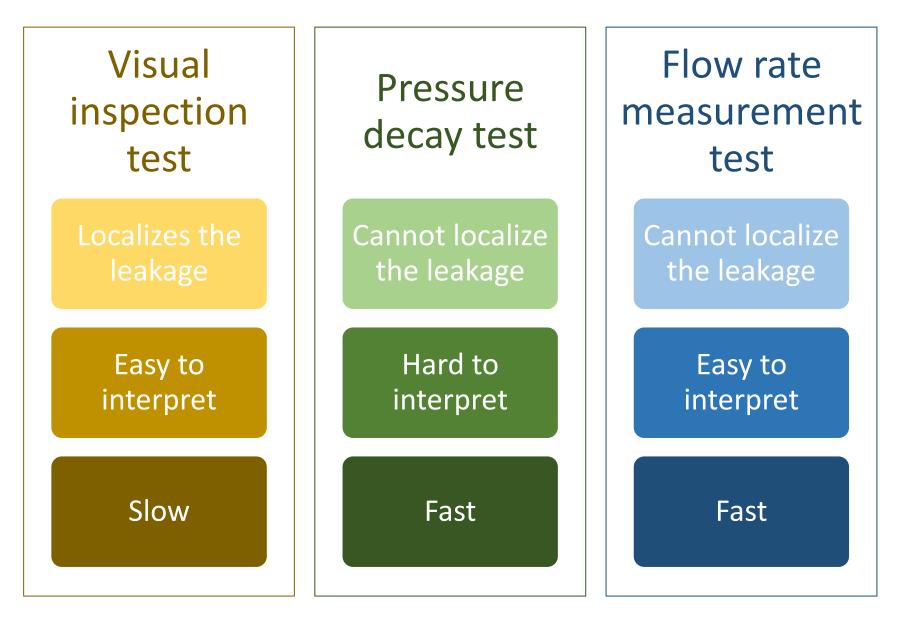
- 1. Power ON
- 2. 30 min stabilization time
- 3. Set pressure to increase by steps from 0 to 140 kPa
- 4. Fix the pressure at a given setpoint by the pressure co
- 5. Record p_{in} , T_{amb} , p_{amb} , humidity

Variability and subsequent decay in pressure indicate leakage

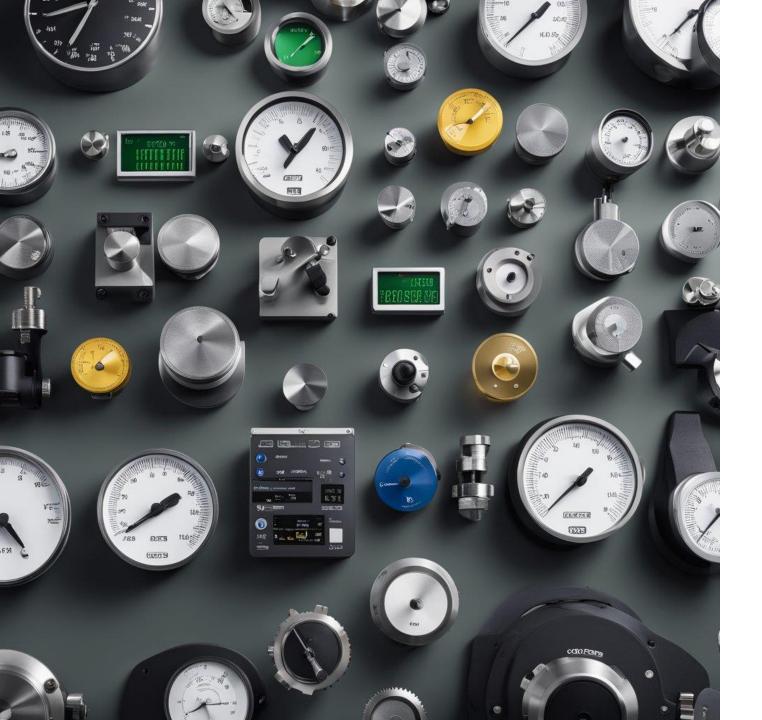
I. Visual inspection test


- 1. Power ON
- 2. 30 min stabilization time
- 3. Set pressure to increase by steps from 0 to 20 kPa
- 4. Record images, p_{in}, T_{amb}, p_{amb}, humidity

II. Pressure decay test


- 1. Power ON
- 2. 30 min stabilization time
- 3. Set pressure to increase by steps from 0 to 140 kPa
- 4. Fix the pressure at a given setpoint by the pressure controller for 3 min
- 5. Record p_{in} , T_{amb} , p_{amb} , humidity

III. Flow rate measurement test

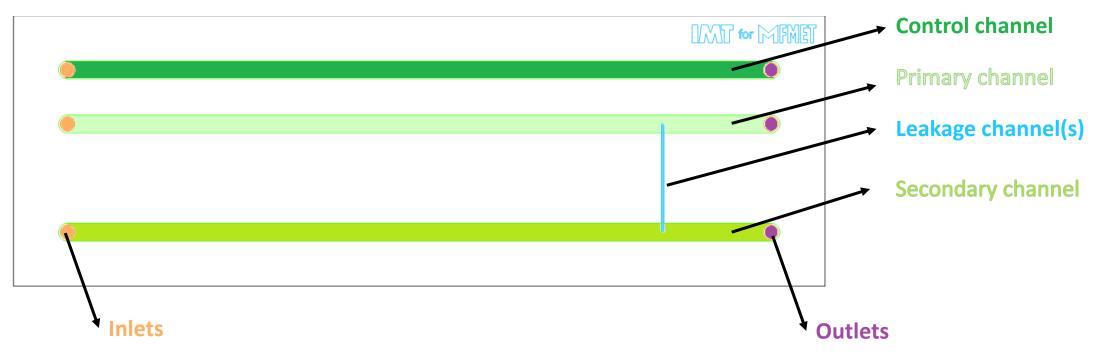

- 1. Power ON
- 2. 30 min stabilization time
- 3. Set pressure to increase by steps from 0 to 140 kPa
- 4. Record \dot{m} , p_{in} , T_{amb} , p_{amb} , humidity

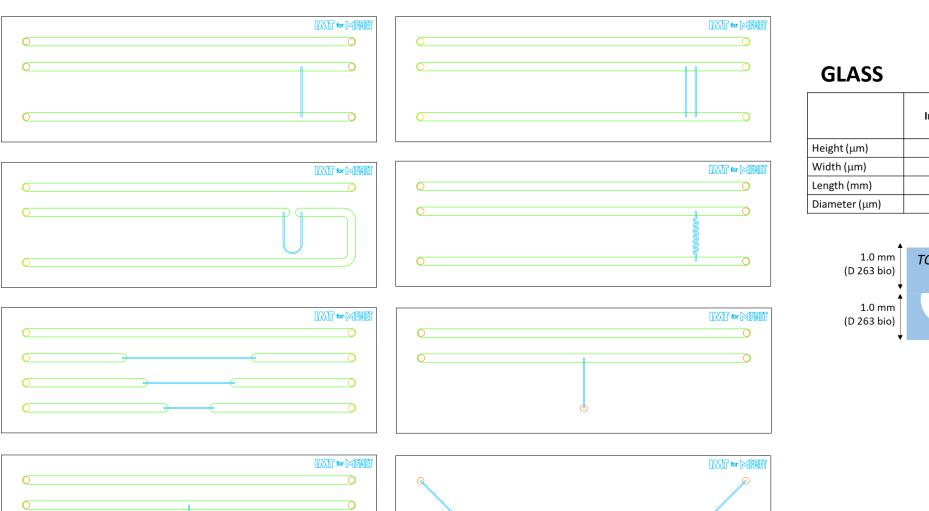
Step in flow rate indicates leakage

- Liquid-based testing \rightarrow destructive testing
- Inappropriate -> contamination, sterilisation, or single-use devices

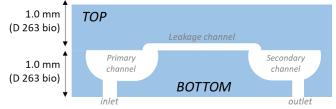


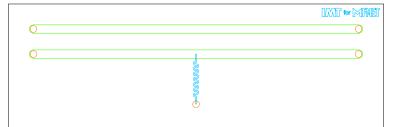
All instruments calibrated on their full range, and by traceability to national standard CETIAT at laboratory ISO or by 17025 accredited laboratories


GLASS


45 mm

GLASS

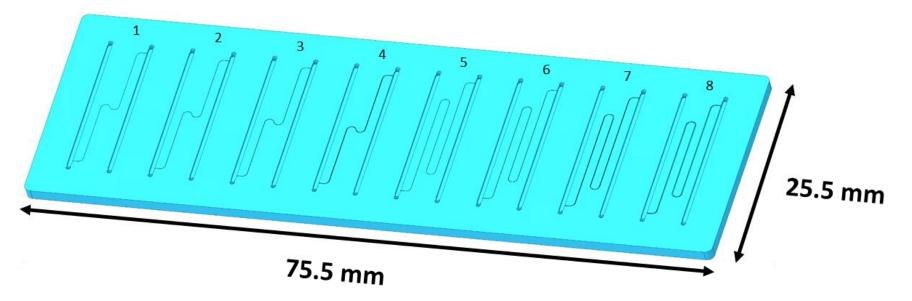




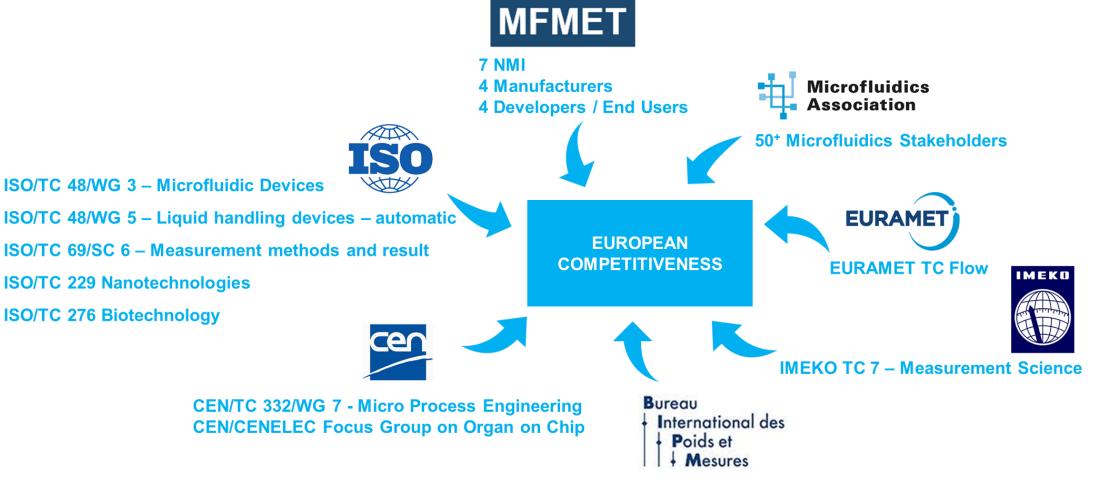


	Inlet/outlet	Control/Primary/ Secondary channels	Leakage channel
Height (µm)		100	2
Width (µm)		1000	150
Length (mm)		33	5; 10; 15
Diameter (µm)	800		

Side view

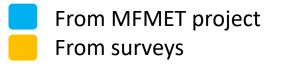


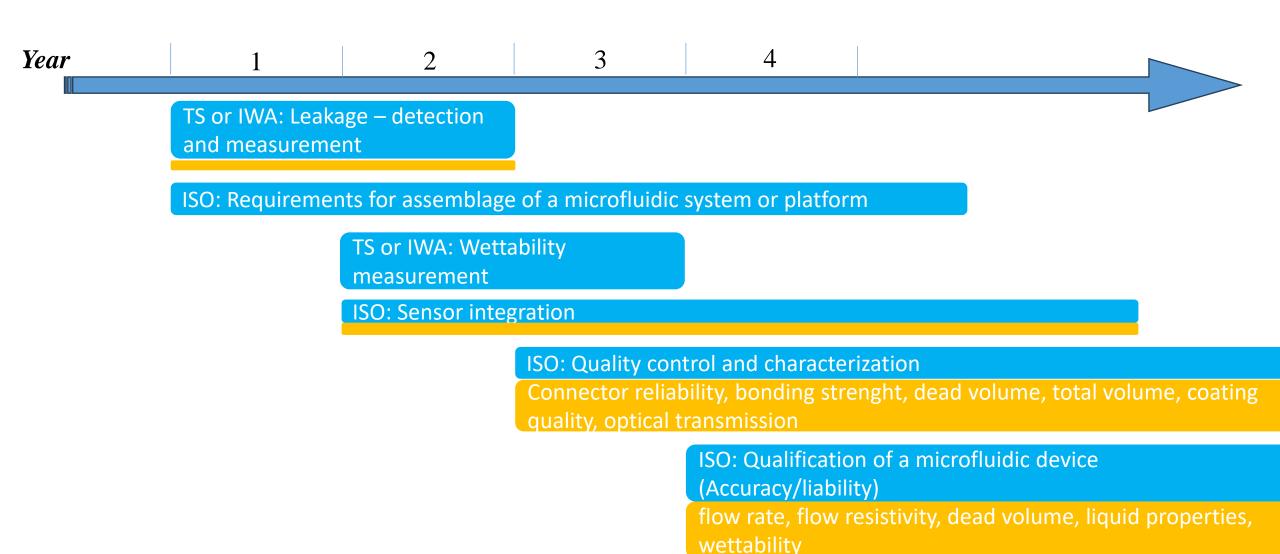
PLASTIC


Design nr.	Inlet/ outlet	1	2	3	4	5	6	7	8
Height (µm)		5	10	20	50	10	20	50	100
Width (µm)		5	10	20	50	10	20	50	100
Length (mm)		20	20	20	20	40	40	40	40
Diameter (µm)	500								

Waiting for results

CCM Working Group on Fluid Flow


The knowledge gained from this project Is being transferred to ISOTC 48/WG 3


and applied in the revision and development of new standards

International Organization for Standardization

Timeline for working items ISO/TC 48/WG 3

THANK YOU

Vania Silverio

vania.silverio@tecnico.ulisboa.pt

https://www.linkedin.com/in/vaniasilverio

https://mfmet.eu

This project 20NRM02 MFMET has received funding from the EMPIR programme co-financed by the Participating States and from the European Union's Horizon 2020 research and innovation programme